Haploinsufficiency of the murine polycomb gene Suz12 results in diverse malformations of the brain and neural tube.
نویسندگان
چکیده
Polycomb proteins are epigenetic regulators of gene expression. Human central nervous system (CNS) malformations are congenital defects of the brain and spinal cord. One example of a human CNS malformation is Chiari malformation (CM), which presents as abnormal brainstem growth and cerebellar herniation, sometimes accompanied by spina bifida and cortical defects; it can occur in families. Clinically, CM ranges from an asymptomatic condition to one with incapacitating or lethal symptoms, including neural tube defects and hydrocephalus. However, no genes that are causally involved in any manifestation of CM or similar malformations have been identified. Here, we show that a pathway that involves Zac1 (also known as Plagl1 or Lot1) and controls neuronal proliferation is altered in mice that are heterozygous for the polycomb gene Suz12, resulting in a phenotype that overlaps with some clinical manifestations of the CM spectrum. Suz12 heterozygotes show cerebellar herniation and an enlarged brainstem, accompanied by occipital cortical alterations and spina bifida. Downward displacement of the cerebellum causes hydrocephalus in the most severely impaired cases. Although the involvement of polycomb genes in human disease is starting to be recognized, this is the first demonstration of their role in nervous system malformations. Our work strongly suggests that brain malformations such as CM can result from altered epigenetic regulation of genes involved in cell proliferation in the brain.
منابع مشابه
Dev111997 722..731
Neural crest cells arise from the border of the neural plate and epidermal ectoderm,migrate extensively and differentiate into diverse cell types during vertebrate embryogenesis. Althoughmuch has been learnt about growth factor signals and gene regulatory networks that regulate neural crest development, limited information is available on how epigenetic mechanisms control this process. In this ...
متن کاملPolycomb group proteins are essential for spinal cord development.
Birth defects are the leading cause of infantile mortality, followed by neural tube defects (NTD) and congenital heart defects. Spina bifida and anencephaly are among the most common forms of NTD. NTD etiologies are complex, and are associated with both genetic and environmental factors. Polycomb group proteins are essential for vertebrate development; therefore, the purpose of this study was t...
متن کاملSUZ12 promotes human epithelial ovarian cancer by suppressing apoptosis via silencing HRK.
Epithelial ovarian cancer (EOC) ranks first as the cause of death for gynecological cancers in the United States. SUZ12 is a component of the polycomb repressive complex 2 (PRC2) and is essential for PRC2-mediated gene silencing by generating trimethylation on lysine 27 residue of histone H3 (H3K27Me3). The role of SUZ12 in EOC has never been investigated. Here, we show that SUZ12 is expressed ...
متن کاملاثرات تراتوژنیک گاباپنتین بر تکامل لوله عصبی و اسکلتی جنین های موش سوری
Background and purpose : Gabapentin is a new Antiepileptic drugs that introduced for the treatment of partial and second generalized seizures. Other usages of this drug include relief of neuropathic pains such as diabetic and cancers neuropathy and also prophylaxy of migrane. There is little information about the teratogenic effects of this drug. Only few studies reported delay in ossificatio...
متن کاملEffective in vitro gene delivery to murine cancerous brain cells using carbon nanotube-polyethylenimine conjugates
Objective(s): Carbon nanotube (CNT) has been widely applied at molecular and cellular levels due to its exceptional properties. Studies based on conjugation of CNTs with biological molecules indicated that biological activity is preserved. Polyethylenimine (PEI) is explored in designing novel gene delivery vectors due to its ability to condense plasmid DNA through electrostatic attraction. In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Disease models & mechanisms
دوره 2 7-8 شماره
صفحات -
تاریخ انتشار 2009